Time-stretch spectroscopy

Time-stretch coherent Raman scattering spectroscopy (TS-CRS)

Raman scattering spectroscopy is widely used as an analytical technique in various fields, but its measurement process tends to be slow due to the low scattering cross-section. In the last decade, various broadband coherent Raman scattering spectroscopy techniques have been developed to address this limitation, achieving a measurement rate of about 100 kSpectra/s. Here, we present a significantly increased measurement rate of 50 MSpectra/s, which is 500 times higher than the previous state-of-the-art, by developing time-stretch coherent Raman scattering spectroscopy. Our newly-developed system, based on a mode-locked Yb fiber laser, enables highly-efficient broadband excitation of molecular vibrations via impulsive stimulated Raman scattering with an ultrashort femtosecond pulse and sensitive time-stretch detection with a picosecond probe pulse at a high repetition rate of the laser. As a proof-of-concept demonstration, we measure broadband coherent Stokes Raman scattering spectra of organic compounds covering the molecular fingerprint region from 200 to 1,200 cm-1. This high-speed broadband vibrational spectroscopy technique holds promise for unprecedented measurements of sub-microsecond dynamics of irreversible phenomena and extremely high-throughput measurements.

arXiv:2304.10804

Upconversion time-stretch infrared spectroscopy (UC-TSIR)

High-speed measurement confronts the extreme speed limit when the signal becomes comparable to the noise level. In the context of broadband mid-infrared spectroscopy, state-of-the-art ultrafast Fourier-transform infrared spectrometers, in particular dual-comb spectrometers, have improved the measurement rate up to a few MSpectra s−1, which is limited by the signal-to-noise ratio. Time-stretch infrared spectroscopy, an emerging ultrafast frequency-swept mid-infrared spectroscopy technique, has shown a record-high rate of 80 MSpectra s−1 with an intrinsically higher signal-to-noise ratio than Fourier-transform spectroscopy by more than the square-root of the number of spectral elements. However, it can measure no more than ~30 spectral elements with a low resolution of several cm−1. Here, we significantly increase the measurable number of spectral elements to more than 1000 by incorporating a nonlinear upconversion process. The one-to-one mapping of a broadband spectrum from the mid-infrared to the near-infrared telecommunication region enables low-loss time-stretching with a single-mode optical fiber and low-noise signal detection with a high-bandwidth photoreceiver. We demonstrate high-resolution mid-infrared spectroscopy of gas-phase methane molecules with a high resolution of 0.017 cm−1. This unprecedentedly high-speed vibrational spectroscopy technique would satisfy various unmet needs in experimental molecular science, e.g., measuring ultrafast dynamics of irreversible phenomena, statistically analyzing a large amount of heterogeneous spectral data, or taking broadband hyperspectral images at a high frame rate.

Light: Science & Applications 12, 48 (2023), UTokyoFOCUS

Time-stretch infrared spectroscopy

Improving the spectral acquisition rate of broadband mid-infrared spectroscopy promises further advancements of molecular science and technology. Unlike pump-probe spectroscopy, which requires repeated measurements with different pump-probe delays, continuous spectroscopy running at a high spectral acquisition rate enables transient measurements of fast non-repeating phenomena or statistical analysis of a large amount of spectral data. Recently, Fourier-transform infrared spectrometers with rapid delay scan mechanisms including dual-comb spectrometers have significantly improved the measurement rate up to ~1 MSpectra s−1 that is fundamentally limited by the signal-to-noise ratio. Here, we overcome the limit and demonstrate the fastest continuous broadband mid-infrared spectrometer running at 80 MSpectra s−1 by implementing a wavelength-swept time-stretch spectroscopy technique. Our proof-of-concept experiment demonstrates broadband absorption spectroscopy of phenylacetylene from 4.4 to 4.9 μm (2040–2270 cm−1) at a resolution of 15 nm (7.7 cm−1) with a signal-to-noise ratio of 85 without averaging and a shot-to-shot fluctuation of 1.3%.

Communications Physics 3, 152 (2020)UTokyoFOCUS