Mid-infrared Photothermal Microscopy

Mid-infrared photothermal imaging is a newly developed chemical imaging technology that enables highly sensitive live-cell imaging with molecular-bond-selective contrast. Over the past several years, we have developed wide-field mid-infrared photothermal imaging techniques, demonstrating video-rate and super-resolution live-cell imaging. This technology could pave the way for next-generation chemical imaging in cell biology.

Video-rate live-cell microscopy

Advancement in mid-infrared (MIR) technology has led to promising biomedical applications of MIR spectroscopy, such as liquid biopsy or breath diagnosis. On the contrary, MIR microscopy has been rarely used for live biological samples in an aqueous environment due to the lack of spatial resolution and the large water absorption background. Recently, mid-infrared photothermal (MIP) imaging has proven to be applicable to 2D and 3D single-cell imaging with high spatial resolution inherited from visible light. However, the maximum measurement rate has been limited to several frames s−1, limiting its range of use. Here, we develop a significantly improved wide-field MIP quantitative phase microscope with two orders-of-magnitude higher signal-to-noise ratio than previous MIP imaging techniques and demonstrate live-cell imaging beyond video rate. We first derive optimal system design by numerically simulating thermal conduction following the photothermal effect. Then, we develop the designed system with a homemade nanosecond MIR optical parametric oscillator and a high full-well-capacity image sensor. Our high-speed and high-spatial-resolution MIR microscope has great potential to become a new tool for life science, in particular for live-cell analysis.

Light: Science & Applications 12, 174 (2023)  Press release

Wide-field nanoscopy

Mid-infrared (MIR) spectroscopy is widely recognized as a powerful, non-distractive method for chemical analysis. However, its utility is constrained by a micrometer-scale spatial resolution imposed by the long-wavelength MIR diffraction limit. This limitation has been recently overcome by MIR photothermal (MIP) imaging, which detects photothermal effects induced in the vicinity of MIR absorbers using a visible-light microscope. Despite its promise, the full potential of its spatial resolving power has not been realized. Here, we present an optimal implementation of wide-field MIP imaging to achieve high spatial resolution. This is accomplished by employing single-objective synthetic-aperture quantitative phase imaging (SOSA-QPI) with synchronized sub-nanosecond MIR and visible light sources, effectively suppressing the resolution-degradation effect caused by photothermal heat diffusion. We demonstrate far-field MIR spectroscopic imaging with a spatial resolution limited by the visible diffraction, down to 125 nm, in the MIR region of 3.12-3.85 um (2,600-3,200 cm-1). This technique, through the use of a shorter visible wavelength and/or a higher objective numerical aperture, holds the potential to achieve a spatial resolution of less than 100 nm, thus paving the way for MIR wide-field nanoscopy.

arXiv:2306.08245

3D live-cell imaging with optical diffraction tomography

Label-free optical imaging is valuable in biology and medicine because of its non-destructive nature. Quantitative phase imaging (QPI) and molecular vibrational imaging (MVI) are the two most successful label-free methods, providing morphological and biochemical information, respectively. These techniques have enabled numerous applications as they have matured over the past few decades; however, their label-free contrasts are inherently complementary and difficult to integrate due to their reliance on different light–matter interactions. Here we present a unified imaging scheme with simultaneous and in situ acquisition of quantitative phase and molecular vibrational contrasts of single cells in the QPI framework using the mid-infrared photothermal effect. The robust integration of subcellular morphological and biochemical label-free measurements may enable new analyses, especially for studying complex and fragile biological phenomena such as drug delivery, cellular disease, and stem cell development, where long-time observation of unperturbed cells is needed under low phototoxicity.

Optica 7, 359-366 (2020)UTokyoFOCUS

Mid-infrared photothermal quantitative phase imaging (MIP-QPI)

Quantitative phase imaging (QPI) quantifies the sample-specific optical-phase-delay enabling objective studies of optically transparent specimens such as biological samples but lacks chemical sensitivity, limiting its application to a morphology-based diagnosis. We present wide-field molecular vibrational (MV) microscopy realized in the framework of QPI utilizing a mid-infrared (MIR) photothermal effect. Our technique provides MIR spectroscopic performance comparable to that of a conventional infrared spectrometer in the molecular fingerprint region of 1450−1640  cm−1 and realizes wide-field molecular imaging of a silica-polystyrene bead mixture over a 100  μm×100  μm area at 1 frame per second with the spatial resolution of 430 nm and 2–3 orders of magnitude lower fluence of ∼10  pJ/μm2 compared to other high-speed label-free molecular imaging methods, reducing photodamages to the sample. With a high-energy MIR pulse source, our technique could enable high-speed, label-free, simultaneous, and in situ acquisition of quantitative morphology and MV contrast, providing new insights for studies of optically transparent complex dynamics.

Optics Letters 44, 3729-3732 (2019)

Mid-infrared phototheral phase-contrast imaging

An optical microscope enables image-based findings and diagnosis on microscopic targets, which is indispensable in many scientific, industrial and medical settings. A standard benchtop microscope platform, equipped with e.g., bright-field and phase-contrast modes, is of importance and convenience for various users because the wide-field and label-free properties allow for morphological imaging without the need for specific sample preparation. However, these microscopes never have capability of acquiring molecular contrast in a label-free manner. Here, we develop a simple add-on optical unit, comprising of an amplitude-modulated mid-infrared semiconductor laser, that is attached to a standard microscope platform to deliver the additional molecular contrast of the specimen on top of its conventional microscopic image, based on the principle of photothermal effect. We attach this unit, termed molecular-contrast unit, to a standard phase-contrast microscope, and demonstrate high-speed label-free molecular-contrast phase-contrast imaging of silica-polystyrene microbeads mixture and molecular-vibrational spectroscopic imaging of HeLa cells. Our simple molecular-contrast unit can empower existing standard microscopes and deliver a convenient accessibility to the molecular world.

Scientific Reports 9, 9957 (2019),  UTokyo FOCUS